Vector shock soliton and the Hirota bilinear method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hirota Bilinear Formalism and Supersymmetry

Extending the gauge-invariance principle for τ functions of the standard bilinear formalism to the supersymmetric case, we define N = 1 supersymmetric Hirota operators. Using them, we bilinearize SUSY nonlinear evolution equations. The super-soliton solutions and extension to SUSY sine-Gordon are also discussed. As a quite strange paradox it is shown that the Lax integrable SUSY KdV of Manin-Ra...

متن کامل

Hirota’s bilinear method and soliton solutions

In this lecture we will first discuss integrability in general, its meaning and significance, and then make some general observations about solitons. We will then introduce Hirota’s bilinear method, which is particularly useful in constructing multisoliton solutions for integrable nonlinear evolution equations. 1 Why is integrability important? In very general terms integrability means regulari...

متن کامل

Solitons of the Resonant Nonlinear Schrodinger Equation with Nontrivial Boundary Conditions and Hirota Bilinear Method

Physically relevant soliton solutions of the resonant nonlinear Schrodinger (RNLS) equation with nontrivial boundary conditions, recently proposed for description of uniaxial waves in a cold collisionless plasma, are considered in the Hirota bilinear approach. By the Madelung representation, the model transformed to the reaction-diffusion analog of the NLS equation for which the bilinear repres...

متن کامل

Finite - genus solutions for the Hirota ’ s bilinear difference equation

The finite-genus solutions for the Hirota's bilinear difference equation are constructed using the Fay's identities for the θ-functions of compact Riemann surfaces. In the present work I want to consider once more the question of constructing the finite-genus solutions for the famous Hirota's bilinear difference equation (HBDE) [1] which has been solved in [2] using the so-called algebraic-geom...

متن کامل

Hirota bilinear identity and integrable q - difference and lattice hierarchies

Hirota bilinear identity for Cauchy-Baker-Akhieser (CBA) kernel is introduced as a basic tool to construct integrable hierarchies containing lattice and q-difference times. Determinant formula for the action of meromorphic function on CBA kernel is derived. This formula gives opportunity to construct generic solutions for integrable lattice equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos, Solitons & Fractals

سال: 2005

ISSN: 0960-0779

DOI: 10.1016/j.chaos.2004.12.021